朱曼璐,现为华中师范大学生命科学学院教授,博士生导师,兼任湖北省暨武汉市微生物学会理事。主持国家优秀青年科学基金、面上项目、湖北省杰出青年科学基金等;先后获湖北省向上向善好青年、湖北省楚天学子、华中师范大学桂子学者、周洪宇华大卓越人才奖以及三育人先进个人等荣誉称号。本人坚持“四个面向”,对标国家生命科学发展的重大战略需求,长期采用定量与合成生物学手段开展微生物生长调控与环境响应前沿研究。迄今以第一或通讯作者身份在Nature Microbiology、Science Advances、Nature Communications、Nucleic Acids Research、Trends in Biochemical Sciences等国际权威期刊发表论文多篇,系列成果荣获2023年度湖北省自然科学二等奖。长期扎根教学一线,主讲多门专业核心课程,还积极参加社会服务如为青少年开展科普讲座。指导大学生获国家级生命科学竞赛四项(一等奖1次、二等奖3次)及省级生命科学竞赛一等奖4次。
教育经历:
2011年9月- 2017年1月 北京大学,生命科学学院,理学博士。
2007年9月- 2011年6月 南京农业大学,生命科学学院,理学学士。
工作经历:
2020年9月-至今,华中师范大学,生命科学学院,教授
2017年2月- 2020年9月,华中师范大学,生命科学学院,副教授
2013年10月- 2015年10月,美国加州大学圣地亚哥分校,物理系,访问学者
荣誉或奖励
2023年 湖北省自然科学二等奖(“细菌生长调控与环境响应机制的定量解析”,第二完成人)。
2022年 湖北省杰青
2022年 湖北省向上向善好青年
2020年 国家高层次人才支持计划(青年)项目
2017年 湖北省青年人才支持计划
2023年 周洪宇华大卓越人才奖
2020年 华中师范大学“桂子学者”
2020年 华中师范大学“三育人先进个人”
2019年 华中师范大学“桂子青年学者”
2024年 华中师范大学第五届“党员好故事”展评活动一等奖
主要研究领域:
研究微生物如何对各种生态环境进行适应,进而对其自身生长进行调控。主要采用定量与合成生物学手段,揭示微生物生长与基因表达及蛋白质合成效率的偶联机制,以及微生物生长与细胞大小及细胞周期的偶联机制,以期破译微生物生长的内在限制性因素,进而从整体水平理解微生物系统的顶层设计原理。
承担科研项目:
1.国家自然科学基金面上项目,32470038,RapP蛋白对枯草芽孢杆菌生长繁殖的调控机制研究,2025.01-2028.12,50万,在研,主持。
2.国家自然科学基金面上项目,32270034,全局调控因子(p)ppGpp对需钠弧菌细胞大小与细胞周期的调控机制研究,2023.01-2026.12,54万,在研,主持。
3.湖北省杰出青年科学基金项目,2022CFA044,全局调控因子(p)ppGpp对金黄色葡萄球菌抗生素耐受性的调控机制研究,2022.10.1-2025.9.30,30万,在研,主持。
4.国家自然科学基金优秀青年科学基金项目,32022001,微生物生长生理,2021.01-2023.12,120万,结题,主持。(优青结题考核结果为优秀)
5.国家自然科学基金面上项目,31870028,需钠弧菌细胞大小及细胞周期与生长偶联的定量模式研究,2019.01-2022.12,59万,结题,主持。
6.国家自然科学基金青年项目,31700039,核糖核苷酸还原酶对大肠杆菌细胞大小与细胞周期的调控研究,2018.01-2020.12,25万,结题,主持。
代表性论文:
1.Zhu M, Wang Y, Mu H, Han F, Wang Q, Pei Y, Wang X, Dai X* (2024) Plasmid-encoded phosphatase RapP enhances cell growth in non-domesticated Bacillus subtilis strains. Nature Communications, 15: 9567.
2.Wang Y, Pei Y, Wang X, Dai X*, Zhu M* (2024) Antimicrobial metabolites produced by the plant growth-promoting rhizobacteria (PGPR): Bacillus and Pseudomonas. Advanced Agrochem, 3(3): 206-221.
3.Zhu M; Dai X* (2024). Shaping of microbial phenotypes by trade-offs. Nature Communications, 15(1): 4238.
4.Zhu M*, Mu H, Dai X* (2024) Integrated control of cell growth and stress response by (p)ppGpp in Escherichia coli, a seesaw fashion. iScience. 27(2): 108818.
5.Zhu M, et al. (2023). A fitness trade-off between growth and survival governed by Spo0A-mediated proteome allocation constraints in Bacillus subtilis. Science Advances, 9(39): eadg9733.
6.Zhu M*; Dai X*; (2023). Stringent response ensures the timely adaptation of bacterial growth to nutrient downshift. Nature Communications, 14(1): 467. (ESI高被引论文)
7.Mu H, et al., Zhu M*. (2023). Recent functional insights into the magic role of (p)ppGpp in growth control. Comput Struct Biotechnol J, 21, 168-175.
8.Zhu M*, Mu H, Han F, Wang Q, Dai X*. (2021). Quantitative analysis of asynchronous transcription-translation and transcription processivity in Bacillus subtilis under various growth conditions. iScience. 24(11):103333.
9.Zhu M*, Mu H, Jia M, Deng L, Dai X*. (2021). Control of ribosome synthesis in bacteria: the important role of rRNA chain elongation rate. Science China Life Sciences. 64(5), 795-802.
10.Dai X*, Zhu M*. (2020). Coupling of Ribosome Synthesis and Translational Capacity with Cell Growth. Trends Biochem Sci. 45(8), 681-692.
11.Zhu M*, Dai X*. (2020). Bacterial stress defense: the crucial role of ribosome speed. Cell. Mol. Life Sci. 77(5), 853–858.
12.Zhu M, Mori M, Hwa T*, Dai X*. (2019). Disruption of transcription-translation coordination in Escherichia coli leads to premature transcriptional termination. Nature Microbiology. 4(12), 2347-2356.
13.Zhu M*, Dai X*. (2019). Maintenance of translational elongation rate underlies the survival of Escherichia coli during oxidative stress. Nucleic Acids Research. 47(14) 7592-7604, (2019).
14.Zhu M, Dai X*. (2019). Growth suppression by altered (p)ppGpp level results from non-optimal resource allocation in Escherichia coli. Nucleic acids Research. 47(9), 4684-4693. (recommended in faculty of 1000 by Professor KC Huang (Stanford))
15.Dai X, Shen Z, Wang Y, Zhu M*. (2018). Sinorhizobium meliloti, a slow-growing bacterium, exhibits growth rate dependence of cell size under nutrient limitation. mSphere 3:e00567-18. (Highlighted by Nature Reviews Microbiology, https://www.nature.com/articles/s41579-018-0124-y)
16.Dai X*, Zhu M*. (2018). High osmolarity modulates bacterial cell size through reducing initiation volume in Escherichia coli. mSphere. 3(5): e00430-18.
17.Zhu M*, Dai X*. (2018). High salt cross-protects Escherichia coli from antibiotic treatment through increasing efflux pump expression. mSphere. 3(2):e00095-18.
18.Zhu M*, Dai X*. (2018) On the intrinsic constraint of bacterial growth rate: M. tuberculosis’s view of protein translation capacity. Critical Reviews in Microbiology. 44(4), 455-464.
19.Dai X#, Zhu M#, Warren M, Balakrishnan R, Okano H, Williamson JR, Fredrick K, Hwa T. (2018). Slowdown of translational elongation in Escherichia coli under hyperosmotic stress. mBio. 9(1): e02375-17.
20.Zhu M#, Dai X#, Guo W, Ge Z, Yang M, Wang H, Wang Y-P. (2017). Manipulating the bacterial cell cycle and cell size by titrating the expression of ribonucleotide reductase. mBio. 8(6):e01741-17.
21.Dai X#, Zhu M#, Warren M, Balakrishnan R, Okano H, Fredrick K, Wang Y. P*, & Hwa T*. (2016). Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nature Microbiology, 2, 16231.
22.Zhu M, Dai X*, & Wang Y. P*. (2016). Real time determination of bacterial in vivo translation elongation speed based on LacZ alpha complementation assay. Nucleic acids research, 44(20): e155.
23.Basan M#, Zhu M#, Dai X, Warren M, Sévin D, Wang Y. P& Hwa T*. (2015). Inflating bacterial cells by increased protein synthesis. Molecular Systems Biology, 11(10), 836.
24.Dai X#, Zhu M#, & Wang Y. P*. (2014). Circular permutation of E. coli EPSP synthase: increased inhibitor resistance, improved catalytic activity, and an indicator for protein fragment complementation. Chemical Communications, 50(15), 1830-1832.